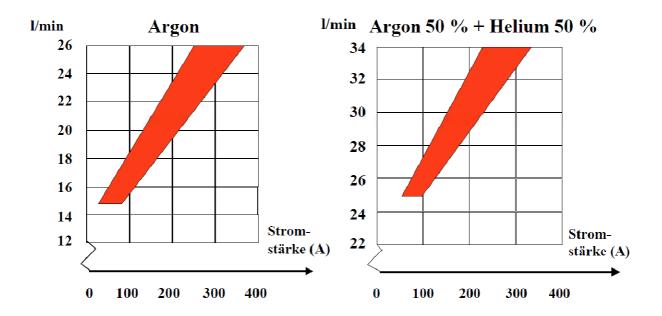
MIG-Aluminiumschweißen

MIG = **M**etall-**I**nertgas-**S**chweißen

Inertgase für das Aluminiumschweißen sind Argon und Helium Gasgemische aus Argon und Helium werden ebenfalls verwendet

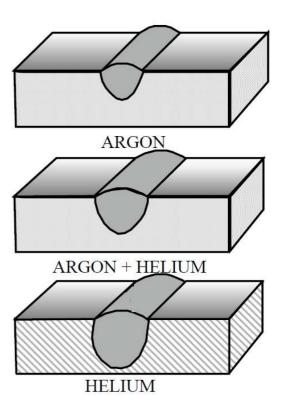

Vorteile:

Hohe Produktivität Schweißen in allen Positionen Leicht zu Schweißen Einfachere Mechanisierung

Nachteile:

Drahtzufuhrstörungen Wetterempfindlich Porositätsgefahr Probleme bei Schweißstart und –ende

Gasfluss



Durchdringung

Häufigstes Gas beim Aluminiumschweißen Lichtbogen ist stabil Kostengünstiger

Bleche über 8 mm Dicke Weniger Vorwärmen erforderlich Erhöhte Schweißgeschwindigkeit

Bleche über 12 mm Dicke Weniger Vorwärmen erforderlich Erhöhte Schweißgeschwindigkeit

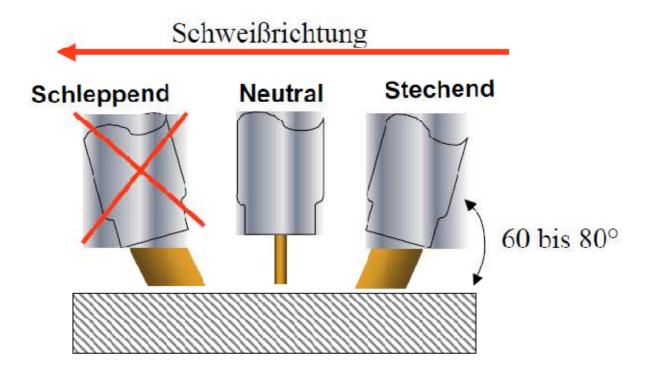
Argon- und Heliumgase

Die angegebenen Argon-Gasflusswerte sind falsch, wenn Helium oder Argon-Helium-Gemische verwendet werden

Die physikalische Kapazität von Helium unterscheidet sich von Argon Die Flusswerte können mit Hilfe der folgenden Faktoren korrigiert werden:

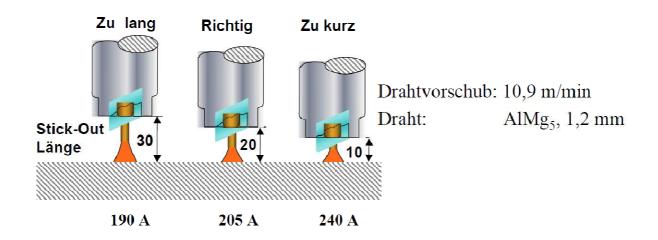
Abschirmgas	Korrekturfaktor
75 % Ar + 25 % He	1,14
50 % Ar + 50 % He	1,35
25 % Ar + 75 % He	1,75
Reines Helium	3,16

Vorwärmen

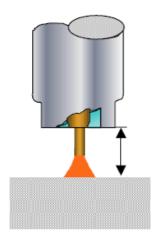

Das Vorwärmen wird bei einer Blechstärken von über 8,0 mm empfohlen:

Gute Durchdringung und Schweißgeschwindigkeit werden sichergestellt Kleinere Werkstücke können in einem Ofen vorgewärmt werden Größere Werkstücke werden normalerweise mit Acetylen-Sauerstoff-Gemisch, Butanflamme usw. vorgewärmt Widerstandsheizung mit Hilfe einer Wärmedecke ist ebenfalls verbreitet

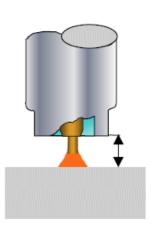
Brennerwinkel


Beim Aluminiumschweißen der Brenner immer gerade oder leicht stechend führen

Saubere Schweißnaht, kein Rauch an der Oberfläche Gute Gasabschirmung Bessere Nahtform


Länge der hervorstehenden Drahtspitze

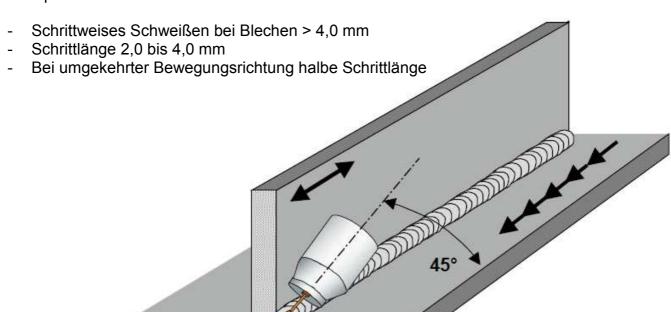
Die Stromstärke ändert sich je nach der Länge der hervorstehenden Spitze, jedoch bleiben Drahtzufuhrgeschwindigkeit und Lichtbogenspannung gleich.


Stick-Out zu lang:

- Schlechte Gasabschirmung
- Instabiler Lichtbogen
- Schlechte Durchdringung

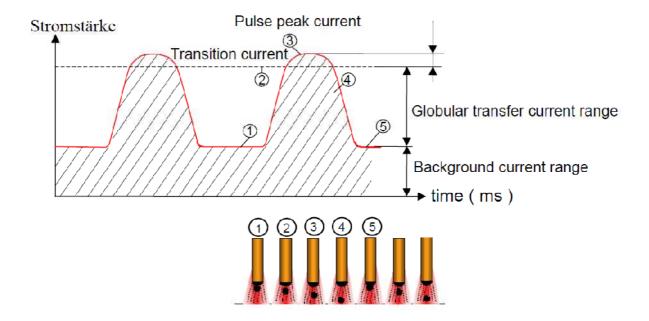
Stick-Out zu kurz:

- Drahtzufuhrstörungen
- Brennerüberhitzung
- Verformung des Schweißprofils

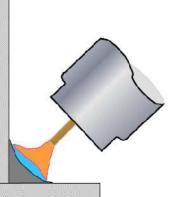


Die richtige Länge für die hervorstehende Drahtspitze beträgt bei hohen Parametern 15 x Drahtdurchmesser (mm) und bei niedrigen Parametern 10 bis 12 x Drahtdurchmesser (mm)

Schrittweises Schweißen


Beim "schrittweisen" Schweißen wird die Schweißnaht zweimal geschmolzen, und Gase haben mehr Zeit, aus dem Schweißbad zu entweichen

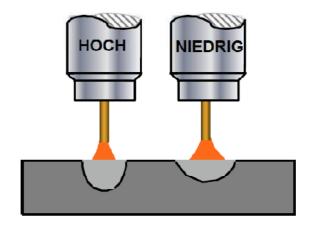
- Geringere Porosität
- Bessere Gasabschirmung und weniger Oberflächenoxidation
- Optisch bessere Schweißnaht


Puls-MIG

- Während der Impulsdauer steigt die Stromstärke in den Bereich des Sprühlichtbogens
- Mit jedem Impuls wird ein kleiner Tropfen Draht in das Schweißbad übertragen
- Die Anzahl der Impulse ist bei verschiedenen Frequenzen (30 bis 300 Hz) unterschiedlich
- Der Lichtbogen brennt ohne Kurzschlüsse kontinuierlich, und die Oberfläche des Ausgangsmaterials wird gereinigt

Vorteile:

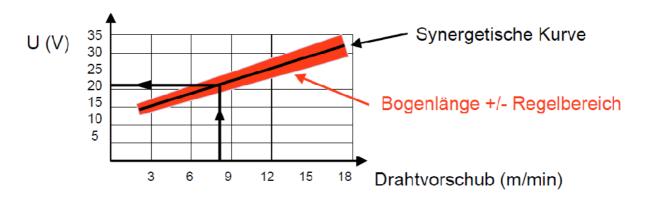
- Ungestörter Lichtbogen ohne Kurzschlüsse
 - o Optisch ansprechenderer Schweißnaht
 - Spritzerfreie Schweißnaht
- Geringe Wärmezufuhr
 - Minimierte Verzug
- Schweißgeschwindigkeit bis zu 35 % schneller als bei Kurzschlussübertragung
- Schweißen in allen Positionen mit Sprühbogenübertragung


Impulsspitzenregelung

Hohe Impulsspitzenstromstärke (1 bis 9)

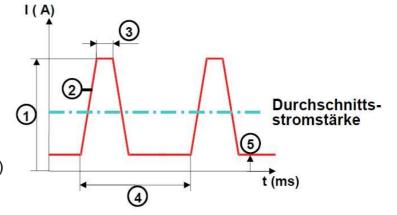
- Schmaler Lichtbogen
- Tiefe Durchdringung I-Stoßfuge
- Kehlnaht

Niedrige Impulsspitzenstromstärke (-1 bis -9)

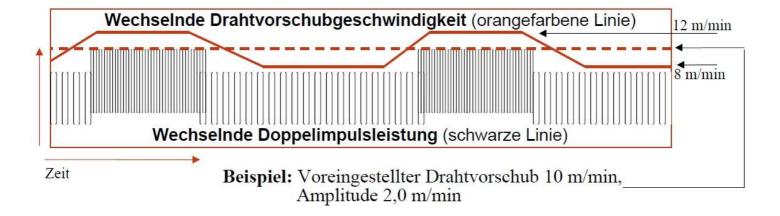

- Flache Durchdringung
- I-Stoßfuge
- Dünnere Bleche

Synergetisches Pulsprogramm

Synergetisches Puls-MIG-Schweißen (1-Regler-MIG)

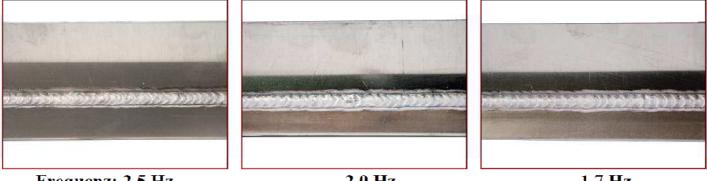

- Alle Parameter werden über den Drehknopf für die Schweißleistung geregelt
- Die richtigen Schweißparameter sind leichter und schneller zu finden
- Problemloses Wiederholen derselben Parameter

Puls-MIG-Parameter


Hauptparameter:

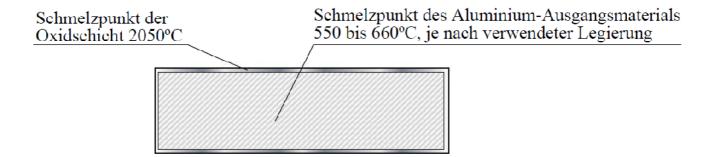
- 1. Impulsstromstärke (A)
- 2. Anstiegsgeschwindigkeit (A/ms)
- 3. Impulsdauer (ms)
- 4. Frequenz (Hz)
- 5. Hintergrundstromstärke (A)
- 6. Drahtvorschubgeschwindigkeit (m/min)

Doppelimpuls-MIG


- Puls-MIG-Schweißen mit wechselnden Doppelimpuls-MIG-Parametern
- In der Fabrik eingestellte Parameter sind für Doppelimpuls-MIG-Schweißen geeignet
- Amplitude der Drahtvorschubgeschwindigkeit verstellbar (eingestellte Leistung) (0,1 bis 2,5 m/min)
- Frequenz der Drahtvorschubgeschwindigkeit verstellbar (0,1 bis 3,0 Hz)
- Konstantes Impulsdauerverhältnis (Impulsdauer 30 %)

Doppelimpuls-MIG-Schweißen

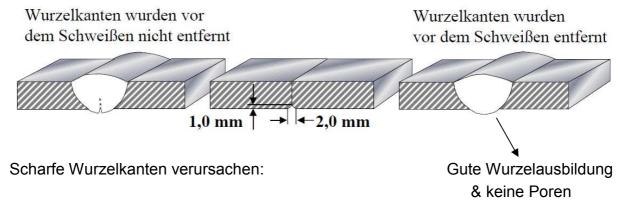
- Verringerte Porosität
- Bessere Durchdringung
- Positionsschweißen ist einfacher
- Optisch ansprechende Schweißnaht (Überlappungsverbindung wie beim WIG-Schweißen)


Beispiel: Blech 1,5 mm, Draht 1,2 mm AlMg5, Doppelimpulsamplitude 1,9/min

Frequenz: 2,5 Hz 2,0 Hz 1,7 Hz

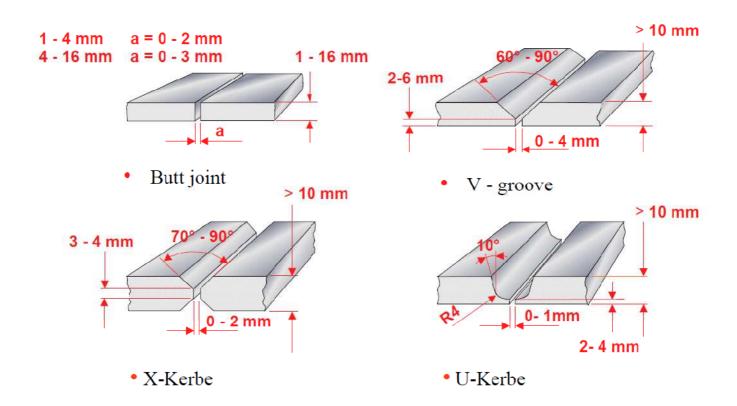
Aluminiumoxid

- Das Aluminium-Ausgangsmaterial bildet immer eine Oxidschicht, wenn es mit Sauerstoff in Berührung kommt
- Luft enthält 21 % Sauerstoff
- Oxid regeneriert sich automatisch
- Die dicksten Oxidschichten bilden sich auf AlMg5-Legierungen, AWS 5356 (Seewasser-Korrosionsbeständigkeit)
- Bei eloxiertem Aluminium-Ausgangsmaterial muss diese Schicht vor dem Schweißen entfernt werden (5 mm von beiden Seiten der Schweißnaht)



Schweißwurzelvorbereitung

- Für die Nahtvorbereitung sollte entweder eine Schneidscheibe oder eine Frässcheibe verwendet werden.
- Die Oxidschicht sollte mit einer Edelstahlbürste oder einer mechanischen Bürste entfernt werden (30 mm von beiden Seiten der Naht).
- Die Oberfläche des Aluminium muss trocken und frei von Öl, Staub und Verunreinigungen sein. Für diesen Zweck ist Aceton oder Ölentferner am besten geeignet.
- Wenn eine Schleifmaschine verwendet wird, sollten die Schleifscheiben für Aluminiumarbeiten geeignet sein.
- Nur elektrische Schleifmaschinen verwenden, da Druckluft-Schleifmaschinen eine Porositätsgefahr mit sich bringen (Öl in Luftleitungen).

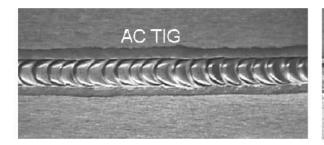

Wurzelkanten

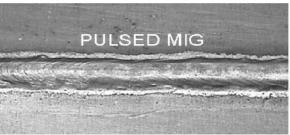
- Beim Schweißen von I-Stößen (I, U and V-Naht) sollten scharfe Kanten mechanisch entfernt werden (Schleifen etc).
- Durch Entfernen der Ecken bekommt man eine fehlerfreie Wurzel.

- falsches Nahtprofil
- Poren
- Oxid-Einschlüsse
- Gefahr von Rissen

Fugentypen beim Aluminiumschweißen

Produktivität

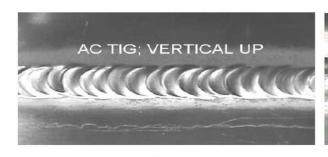

Puls-MIG und AC-WIG


In den drei folgenden Beispielen werden Puls-Mig und AC-Wig im Hinblick auf Schweißgeschwindigkeiten und Wärmezufuhr miteinander verglichen. In diesem Vergleich finden sich drei typische Aluminium Schweißanwendungen.

1. Aluminiumbleche 2,0 mm, I-Stoßfuge, PA (flache) Position

AC-WIG: Schweißgeschwindigkeit = 20 cm/min Puls-MIG: Schweißgeschwindigkeit = 60 cm/min

In dieser Anwendung ist Puls-MIG 3-mal schneller als AC-WIG.

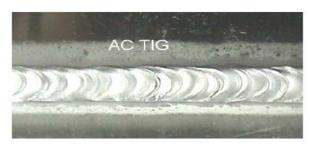

2,62 kJ/cm

1,30 kJ/cm

2. Aluminiumbleche 3,0 mm, Kehlnaht, PF (vertikal nach oben)

AC-WIG: Schweißgeschwindigkeit = 12 cm/min Puls-MIG: Schweißgeschwindigkeit = 42 cm/min

In dieser Anwendung ist Puls-MIG 3,5-mal schneller als AC-WIG.


6,9 kJ/cm

3,5 kJ/cm

3. Aluminiumbleche 5,0 mm, Kehlnaht, PB (flache) Position

AC-WIG: Schweißgeschwindigkeit = 10 cm/min Puls-MIG: Schweißgeschwindigkeit = 46 cm/min

In dieser Anwendung ist Puls-MIG 4,5-mal schneller als AC-WIG.

13,5 kJ/cm

4,89 kJ/cm

Fehler

Poröse Schweißnaht

- Draht bzw. Ausgangsmaterial alt oder verschmutzt
- Abschirmgas qualitativ schlecht oder verunreinigt
- Schweißtechnik bzw. Parameter falsch
- Luftfeuchtigkeit

Wärmerissbildung

- Zu starke Wärmezufuhr
- Draht bzw. Ausgangsmaterial nicht geeignet
- Ausgangsmaterial verunreinigt

Rauch auf der Schweißnahtoberfläche

- Brennerwinkel falsch
- Zu lange hervorstehendes Drahtende
- Gasabschirmung unzureichend
- Schweißrichtung falsch

Fehlende Verschmelzung

- Schweißparameter bzw. Drahtdurchmesser zu klein
- Kein Vorwärmen
- Falsche Technik beim Start